Endogenous zinc depresses GABAergic transmission via T-type Ca2+ channels and broadens the time window for integration of glutamatergic inputs in dentate granule cells

نویسندگان

  • Antonia Grauert
  • Dominique Engel
  • Arnaud J Ruiz
چکیده

Zinc actions on synaptic transmission span the modulation of neurotransmitter receptors, transporters, activation of intracellular cascades and alterations in gene expression. Whether and how zinc affects inhibitory synaptic signalling in the dentate gyrus remains largely unexplored. We found that mono- and di-synaptic GABAergic inputs onto dentate granule cells were reversibly depressed by exogenous zinc application and enhanced by zinc chelation. Blocking T-type Ca(2+) channels prevented the effect of zinc chelation. When recording from dentate fast-spiking interneurones, zinc chelation facilitated T-type Ca(2+) currents, increased action potential half-width and decreased spike threshold. It also increased the offset of the input-output relation in a manner consistent with enhanced excitability. In granule cells, chelation of zinc reduced the time window for the integration of glutamatergic inputs originating from perforant path synapses, resulting in reduced spike transfer. Thus, zinc-mediated modulation of dentate interneurone excitability and GABA release regulates information flow to local targets and hippocampal networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Granule cells in the CA3 area.

A fundamental property of neuronal networks in Ammon's horn is that each area comprises a single glutamatergic cell population and various types of GABAergic neurons. Here we describe an exception to this rule, in the form of granule cells that reside within the CA3 area and function as glutamatergic nonprincipal cells with distinct properties. CA3 granule cells in normal, healthy rats, similar...

متن کامل

Optogenetics: Control of Brain Using Light

Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....

متن کامل

The GABAergic phenotype of the "glutamatergic" granule cells of the dentate gyrus.

The granule cells of the dentate gyrus (DG), origin of the mossy fibers (MFs), have been considered to be glutamatergic. However, data obtained with different experimental approaches in recent years may be calling for a redefinition of their phenotype. Although they indeed release glutamate for fast neurotransmission, immunohistological and molecular biology evidence has revealed that these glu...

متن کامل

Group I metabotropic glutamate receptors inhibit GABA release at interneuron-Purkinje cell synapses through endocannabinoid production.

Actions of endocannabinoids in the cerebellum can be demonstrated following distinct stimulation protocols in Purkinje cells. First, depolarization-induced elevations of intracellular Ca2+ lead to the suppression of neurotransmitter release from both inhibitory and excitatory afferents. In another case, postsynaptic group I metabotropic glutamate receptors (mGluRs) trigger a strong inhibition o...

متن کامل

Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis.

GABAergic transmission regulates adult neurogenesis by exerting negative feedback on cell proliferation and enabling dendrite formation and outgrowth. Further, GABAergic synapses target differentiating dentate gyrus granule cells prior to formation of glutamatergic connections. GABA(A) receptors (GABA(A) Rs) mediating tonic (extrasynaptic) and phasic (synaptic) transmission are molecularly and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 592  شماره 

صفحات  -

تاریخ انتشار 2014